"For example," is not proof.

1. Give two reasons why the set of odd integers under addition is not a group.
2. Referring to Example 13, verify the assertion that subtraction is not associative.
3. Show that $\{1,2,3\}$ under multiplication modulo 4 is not a group but that $\{1,2,3,4\}$ under multiplication modulo 5 is a group.
4. Show that the group $G L(2, \mathbf{R})$ of Example 9 is non-Abelian by exhibiting a pair of matrices A and B in $G L(2, \mathbf{R})$ such that $A B \neq B A$.
5. Find the inverse of the element $\left[\begin{array}{ll}2 & 6 \\ 3 & 5\end{array}\right]$ in $G L\left(2, Z_{11}\right)$.
6. Give an example of group elements a and b with the property that $a^{-1} b a \neq b$.
7. Translate each of the following multiplicative expressions into its additive counterpart. Assume that the operation is commutative.
a. $a^{2} b^{3}$
b. $a^{-2}\left(b^{-1} c\right)^{2}$
c. $\left(a b^{2}\right)^{-3} c^{2}=e$
8. Show that the set $\{5,15,25,35\}$ is a group under multiplication modulo 40 . What is the identity element of this group? Can you see any relationship between this group and $U(8)$?
9. (From the GRE Practice Exam) Let p and q be distinct primes. Suppose that H is a proper subgroup of the integers under addition that contains exactly three elements of the set $\left\{p, p+q, p q, p^{q}, q^{p}\right\}$. Determine which of the following are the three elements in H.
a. $p q, p^{q}, q^{p}$
b. $p+q, p q, p^{q}$
c. $p, p+q, p q$
d. p, p^{q}, q^{p}
e. $p, p q, p^{q}$
10. List the members of $H=\left\{x^{2} \mid x \in D_{4}\right\}$ and $K=\left\{x \in D_{4} \mid x^{2}=e\right\}$.
11. Prove that the set of all 2×2 matrices with entries from \mathbf{R} and determinant +1 is a group under matrix multiplication.
12. For any integer $n>2$, show that there are at least two elements in $U(n)$ that satisfy $x^{2}=1$.
